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ABSTRACT: Reid’s paradox describes the fact that classical models
cannot account for the rapid (lo’-10’ m yr-‘)  spread of trees at
the end of the Pleistocene. I use field estimates of seed dispersal
with an integrodifference equation and simulation models of pop-
ulation growth to show that dispersal data are compatible with
rapid spread. Dispersal estimates lay to rest the possibility that
rapid spread occurred by diffusion. The integrodifference model
predicts that, if the seed shadow has a long ‘Yat” tail, then rapid
spread is possible, despite short average dispersal distances. It fur-
ther predicts that velocity is more sensitive to life history than is
classical diffusion. Application of such models is frustrated because
the tail of the seed shadow cannot be fitted to data. However, the
data can be used to test a “long-distance” hypothesis against alter-
native (“local”) models of dispersal using Akaike’s  Information
Criterion and likelihood ratio tests. Tests show that data are con-
sistent with >lO%  of seed dispersed as a long (10’ m) fat-tailed
kernel. Models based on such kernels predict spread as rapid as
that inferred from the pollen record. If fat-tailed dispersal explains
these rapid rates, then it is surprising not to see large differences
in velocities among taxa  with contrasting life histories. The infer-
ence of rapid spread, together with lack of obvious life-history ef-
fects, suggests velocities may have not reached their potentials, be-
ing stalled by rates of climate change, geography, or both.

Kqrwordc  climate change, diffusion, dispersal, Holocene, migra-
tion, pollen data.
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About the time a Bernese patent clerk thought to de-
scribe random movements by a diffusion equation (Ein-
stein 1905), the underlying principle of diffusion was on
the mind of a Victorian botanist pondering the invasion
of the British Isles by plants (Reid 1899). This early de-
liberation on the spread of tree populations at the end of
the Ice Age, and the crossing of the English Channel in
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particular, was the start of a long-standing puzzle in ecol-
ogy over the disparity between the life histories of trees
and their past rates of spread. This century-old problem
was termed Reid’s paradox (Clark et al. 1998a), in honor
of Clement Reid’s calculations of seemingly impossible
seed dispersal distances needed to spread oaks into Great
Britain at the end of the Pleistocene. Although diffusion
was the assumption from the start, the first formal appli-
cation to this paradox came a half century later and with
disappointing results (Skellam 1951). The effort helped
focus the conflict between life history and paleoevidence
(fig. 1) and emphasized that such rates required dispersal
distances impossibly great in the cbsence  of some exter-
nal aid.

Tree migration rates following the last Ice Age are
truly remarkable. Since Reid’s early calculations, paleo-
ecologists have used 14C-dated  pollen sequences from
temperate lakes (Davis 1976; Huntley and Birks 1983;
Delcourt and Delcourt 1987; Birks 1989; MacDonald
1993) to estimate rates of spread exceeding 10’  m yr-’ for
many tree genera. The fossil record is virtually the sole
evidence for these high rates (but see Fastie 1995); with-
out it, ecologists might arguably believe such rates im-
possible. For instance, tropical biogeography is widely
viewed to reflect Pleistocene refugia (reviewed by Bush
1994) because populations are thought incapable of ex-
tended, rapid migration. Limited migration is a notion
still tenable in the Tropics, where hypotheses are poorly
constrained by paleodata. The possibility that limited dis-
persal could threaten plant populations with future
global change has renewed interest in explaining rapid
migrations of the past (Clark 1993; Pacala and Hurtt
1993; Mellilo et al. 1996; Pitelka et al. 1997).

Just as enigmatic as rapid spread is an apparent unim-
portance of life history. Simple diffusion predicts that re-
production and dispersal determine migration rate. Yet
genera as different in these traits as birch and beech ob-
tained high rates of spread. If dispersal and reproduction
provide for the rapid rates in the paleorecord,  we expect
that taxa  displaying the most rapid spread to be those
that mature early, possess high reproductive capacity,
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of seedlings under closed canopies where seed shadows
overlap is difficult. Seed distributions measured in open
fields may be unrepresentative of closed canopies. Long-
distance dispersal is especially difficult to estimate (Will-
son 1993; Greene and Johnson 1995).

Advances in migration models and in dispersal biol-
ogy permit reanalysis of Reid’s paradox. Paleoecologists
(Davis 1987; Prentice 1992; Clark 1993) and theorists
(Mollison 1972, 1991; Shigesada et al. 1995; Kot et al.
1996) alike have begun to embrace a concept of dispersal
that extends beyond simple diffusion to include rare,
long-distance dispersal. Recent models of spread that ac-
commodate a variety of dispersal patterns (Kot et al.
1996; Lewis 1997) together with new methods to quantify
dispersal (Ribbens et al. 1994; Clark et al. 1998b) provide
means for parameter estimation and a framework for
analys is .

Resolving the paradox means finding a minimal mode1
that, when parameterized with life-history data, is consis-
tent with paleoevidence. Here I use a tractable model of
spread parameterized with dispersal data to account for
Holocene tree spread. I preface this analysis with an out-
line of the model, life-history details needed for its appli-
cation to trees, and predictions relevant for post-Glacial
spread.  The subsequent descript ion of dispersal  modeling
and data is the basis for the first of two components
in this analysis. The first component tests the “long-
distance dispersal hypothesis,” which entails finding a
range of dispersal patterns that are compatible with field
data.  The second component uses these dispersal  patterns
with life-history data in analytical and simulation models
to test whether the data can produce the velocities of
spread inferred from paleorecords.

. .~-
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Figure 1: Rates of spread (eq. [6])  predicted by a diffusion
model for mean dispersal distances pi with a Gaussian (c = 2)
dispersal kernel and density-independent growth rates WT.
The shaded region indicates parameter space conforming to esti-
mated dispersal distances from field data (Clark et al. 1998b)  and
growth rates typically reported from rates of increase in fossil pol-
len data (Clark 1993):

and disperse,seed  long distances. Either such relation-
ships are masked in the paleorecord or taxa  do not differ
sufficiently in life history to have much effect.

Reid’s paradox persists because traditional theory has
been unable to account for rates of early Holocene
spread and because seed dispersal has been too poorly
understood to motivate much new model application.
Since Skellam’s demonstration that a simple model had
little to offer beyond showing that tree migration is not
diffusion, there have been few efforts to fit migration
models to paleodata (Dexter et al. 1987). Migration the-
ory has moved beyond simple diffusion, but models typi-
cally require information that dispersal biologists and
paleoecologists lac&vIodels  of population spre.ad  appro-

Velocities of Spread and the Necessary Parameters

- * priately concern idealized life histories that often consist
of no more than a dispersal parameter and an “intrinsic

* i rate of increase” or net reproductive rate. There has been
little guidance on how to collapse complex life histories
into such parameters and, then, how to estimate them.
Analytical models are likewise of limited application if
dispersal is poorly characterized (Skellam 195 1; Mollison
1991; Higgens et al. 1996). Until recently, seed produc-
tion and dispersal estimates have been highly indirect;
many estimates come from spatial patterns of seedlings
(rather than of seed) relative to adults, which confounds
seed dispersal with density-dependent germination and
survival (Janzen  1970; Hubbell 1980). Identifying parents

Recent models capable of predicting rapid spread differ
from classical diffusion (Skellam 1951) only in the shape
of the dispersal kernel. “Local dispersal,” assumed by dif-
fusion, yields traveling wave solutions (Kolmogorov et al.
1937). Diekmann (1978, 1979; see. also Thieme 1979; van
den Bosch et al. 1990; Mollison 1991) describes a general
approach that begins with the reproductive schedule and
seed shadow as a joint “reproduction and dispersal” den-
sity. The population model involves a spatial renewal
equation that describes the fecundity schedule and dis-
persal. Assuming a traveling wave solution exists, we ar-
rive at a moment (Mollison 1977, 1991) or (upon taking
logs) cumulant (van den Bosch et al. 1990) generating
function for the dispersal kernel. For “exponentially
bounded” kernels (i.e., lacking a fat tail) the moment in-
tegrals converge, permitting asymptotic solutions for
wave velocity (app. A). For kernels fatter than exponen-
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tial,  the moment integrals do not converge, and the ve-
locity of spread increases indefinitely. Kot et al. (1996)
use moment-generating functions to solve integrodiffer-
ence  equations for exponentially bounded kernels but
also provide an approximation when dispersal is fatter
than exponential. Here I summarize model assumptions,
describe how its parameters relate to life history, demon-
strate how the shape of the kernel might affect velocity,
and derive the influence of life history on that velocity.

::.
- :

Model  Assumptions

Assume dispersal and population spread occur along a
one-dimensional transect. An integrodifference equation
model expresses density N, at time t + T as a function
R(N,(y))  of density at time t and dispersal

-N,+T(x)  =
i

f(x - y)RMy))dy.-m

The dispersal kernel f(x - y) is a probability density
function, and T is generation time. The production of
seed at location y is R@!,(y)), and the fraction of seed
produced on the interval (y, y + dy) at time t and arriv-
ing at x, T yr later, is approximately f(x - y) dy. The dis-
persal kernel f(x - y) does not depend on location of
propagule source but only on source distance ]x - y],
The growth function R(N,(y))  is complex for tree popu-
lations. Fortunately, much of this complexity can be ig-
nored for purposes of estimating population spread, be-
cause nonlinear reproduction, growth, and survival in a
competitive environment have minimal impact at the
population frontier. If reproductive success is higher in
the unoccupied habitat than in the competitive popula-
tion interior (van den Bosch et al.‘s  [1990] “linear con-
jecture”),‘then we can estimate rates of spread from the
linearized equation

. ..’

I

ca
N,+T(x)  = R; f(x - Y)N(YjdY, (1)
1.. -ca

where Ri is the net reproductive rate, at low density,
R;(O).  The unknowable effects of interspecific interac-
tions with resident populations in the Holocene will re-’
duce  rates of spread below those we derive from idealized
equation (1).

Model  Parameters  from Tree  Li fe  History

Equation (1) describes spread of an idealized population
with discrete reproduction summarized by three ele-
ments: net reproductive rate R;, generation time T,  and
the dispersal kernel f(x). These elements predict diffu-
sion, and they provide basis for analysis of more complex
types of spread. Net reproductive rate R; and generation

time T summarize complex life-history schedules, and
they depend on the rate of population growth. For com-
parison with s imulat ions that  fol low, I  est imate generat ion
t ime weighted by densi ty- independent  populat ion growth
rate r  from Lotka’s equation *..

I
‘2

l= eerC’m(a)Z(a)da, (2) ‘1.
11

where m(a) and I(a)  are fecundity and survivorship
schedules, respectively, t, is maturation age, and t2  is lon-
gevity. This estimate of r permits calculation of genera-
tion time T:

I

‘ 2
T = aeerom(a)I(a)da (3)

‘I

(Leslie 1966). Net reproductive rate is

I

‘2
R0  = m(a)Z(a)da.

iI (4)

All parameters (r, R&  and T) apply to the density-
independent case (see below). i,‘

I use a two-parameter kernel that has some useful at-
tributes: it includes published dispersal kernels as special
cases, it can be exponentially bounded or fat tailed and
so yields both diffusive and accelerating spread,  and i t  f i ts
seed dispersal data (Clark et al. 1998b):

c

f(x) = c X

2ar(l/c)  exp  - a
i I I)

’
(5)

where r( ) is the gamma function, and a and c are dis-
tance and shape parameters, respectively (fig. 2). Al-
though fitted to two-dimensional seed rain data (see next
section), I use the one-dimensional kernel (5) to empha-
size spread in a single direction and to place my results
within the context of many classical models. The symme-
try of the distribution means that odd moments (mean,
skewness, etc.) equal 0, and kernel shape is summarized
by even moments, the first two being the mean-squared
distance traveled by a seed (second moment)-

aT(3/c)
p2 = l-(1/c)

-and kurtosis, or “fatness,” of the kernel, which de-
pends only on parameter c-

k = r(5k)r(uc)
CL: r-2(3/c)  '

The, conventional “diffusion  coefficient” D is propor-
tional to the mean square displacement (second mo-
ment), 20  = l.t2,  when c = 2, provided we scale time in
discrete units .  Although mean dispersal  is  0 (seeds travel-
ing in opposite directions balance), it is useful to relate
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3A,  B), which depends on Ri  and T, and on the distance
parameter of the dispersal kernel, a.

“Fat-tailed” kernels (c < 1) are not exponentially
bounded (are fatter than exponential; fig. 2) and do not
approach constant rates of spread. Instead, spread accel-
erates as rare, long-distance dispersal produces outlying
populations. The “population front” is noisy and hard to
characterize as outliers establish and coalesce (Mollison
1977; Lewis 1997).

Mixed kernels describe dispersal when distinct pro-
cesses control movement under different circumstances

: (Goldwasser et al. 1994; Me@  and van den Bosch 1995;
Shigesada et al. 1995; Lewis 1997). I use a mixed kernel

0 100
to describe long-distance dispersal due to rare events

Distance (x) such as storms or by animals. Appendix A derives the ve-
locity of spread for a mixed kernel that includes a frac-

.Figure 2:  Example dispersal  kernels  from equation (5) with tion p that is dispersed nearby according to an exponen-
three different values of the shape parameter c shown on linear tially bounded component f,(x) and fraction (1 - p)
and log (inset) scales (bold solid line = fat tailed; dashed dispersed long  &stances according  to a fat-tailed  kernel
line = exponential; thin.  solid line = Gaussian). “Exponen- f,(x),
tially bounded” kernels (c 2 1) decay more rapidly than the ex-
ponential (c = 1). “Fat-tailed” kernels (c < 1) decay more f(x)  =  pfskd  +  (1 - P)fiW. (8)
slowly than exponential. For the case of c = l/2,  the rate of spread increases lin-

early (A6),  and the front flattens over time (fig. 3B).

these quantities to the average distance a seed travels
from the source, the quantity dispersal biologists uncon-
cerned with direction typically estimate as

&-(2/c)
pi=r(llc)*

Velocities

The velocity of expansion that a population achieves de-
pends on life history and on kernel shape (app. A). An
exponentially bounded kernel tends to the traveling
wave; for c = 2,

“-lip  C(t) + :dln  RO. (6)
,-i-

This result obtains as the limit of equation (A4),  derived
from integrodifference equation (1). The discrete time
velocity in equation (6) describes population spread that
is paced by delayed maturation and thus is slower than
purely continuous reproduction, which yields a velocity
of

(Kolmogorov et al.. 1937). The “stepwise” spread de-
scribed by (6) results in a coherent population front
moving it asymptotically constant  “average” velocity (f ig.

How Much Should Li fe  History Matter?

The shape of the kernel affects not only the rate of spread
but also the importance of iife history. Appendix B dem-
onstrates these effects  using sensi t ivi ty coefficients  Sj, the
proportionate effect on velocity C(t) produced by a pro-
portionate change in parameter j. For diffusion (c = 2),
fecundity is important only if net reproductive rate is ex-
tremely low (Bl).  Dispersal and generation time  are
more important than fecundity, having S, = 1 and ST  =
- 1, respectively.

Fat-tailed dispersal amplifies the importance of life
history. Fecundity and generation time have stronger
effects on velocity for fat-tailed kernels than for diffu-
sion, the limits of equations (B2b)  and (B2c) tending to
lim,,, SD -+ 2/ln  R[  and iii,,, ST  + -2, respectively
(fig. 3D). As in the case of diffusion, velocity scales with
dispersal distance, the asymptote of equation (B2a)  being
lim,,, S, + 1. It is straightforward to demonstrate that
net reproductive rate and generation time become in-
creasingly important with increasing fatness of the kernel.

Thus, the generalization of dispersal to include fat-
tailed kernels provides one means of obtaining spread
more rapid than diffusion. Discrete reproduction predicts
slower spread than continuous reproduction. Fat-tailed
kernels exaggerate the effects of life history on rates of
spread. Assessing whether fat-tailed kernels predict the
rates observed in the paleorecord requires estimates of
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Figure 3: Population fronts at 20-yr  intervals for (A) Gaussian and (B) fat-tailed kernel. C,  Rates of spread and (D) sensitivities
to life-history parameters for a fat-tailed kernel (c 1= l/2, p = 0.05, al = 100 m) compared with Gaussian dispersal for Acer
rubrum. T = 5.8 yr, Rh  = 1325, a, = 30.8 m. The sensitivities in (D) show the proportionate effect on spread velocity of a propor-
tionate change in life-history parameters. Solid lines are for the fat-tailed kernel in (B), and they are contrasted with the dashed
lines for a diffusion model (A).

net reproductive rate, generation time, and the dispersal
kernel .

What Do the Dispersal Data Say?

Recent estimates of seed dispersal in forests are incom-
”  ‘. ,

‘ . patible with post-Glacial migration rates. Although Skel-
lam (1951) Qniothers  suspected this to be the case, there
existed no estimates of seed dispersal under closed cano-

.
pies that could be used to test models of population
spread (e.g.; eq. [l]). Most seed shadows have been esti-
mated from spatial patterns of seedlings, often in open
fields, clearcuts, parking lots, or hedgerows. More re-
cently, dispersal has been estimated from actual seed rain
in closed stands (Clark et al. 1998b). The outline of the
estimation procedure that follows is the basis for my
analysis  of  l i fe-history effects on migration rate and a test
of  the long-distance dispersal  hypothesis .

Seed shadows were estimated from 5 yr of seed rain
collected in 100 traps located in five 60-m X 60-m
mapped stands in the southern Appalachians (stand de-

scriptions, methods, and data are detailed in Clark et al.
1998b). The summed seed shadow (SSS) model permits
estimation of the parameters describing fecundity (p,
seed production per centimeter-squared basal area), dis-
persal distance (a, meters), and clumping (0, dimen-
sionless). Values of 8 < 1 indicate highly clumped seed,
whereas large values tend to a Poisson process.  The l ikeli-
hood function is a negative binomial with “mean” seed
arrival ;(x,  b]P, a), depending on a matrix of distances
between trees and seed traps x and a vector tree basal ar-
eas b,

wp, a, 0)
nt seed  traps

II
lY(Sj  + e).?(X,  blf3,  a)‘XP

= (9)
j=l r(Sj + l)r(e)[s(x,  b@, CC) + e]li+e’

‘f
where S is the ensemble of seed traps and sj  is the density
of seed observed in the jth seed trap. The mean seed
shadow is the summed contributions of individual trees i
weighted by their distances Xii  and basal areas bi,

:;

,,
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S;(x, blP> a) = 1 pb;f(x(;la), (10)

i=l

with dispersal kernel given by equation (5) with c = 2.
The fitted seed shadow is represented by values of /3,  a,
and 0 that maximize the likelihood of the observed seed
rain densities S. The fitted two-dimensional kernel in
(10) describes seed rain in any given direction that differs
by a constant from that of the one-dimensional kernel
(5). The proper normalization constant is critical for pa-
rameterization of the kernel from field data (Clark et al.
1998b).  Because the analysis below includes a density-
independent germination g (see “Parameterizing  Life-
History Schedules”), the scaling difference between one-
and two-dimensional kernels is absorbed by g.

The model was fitted to data within individual stands
and tested against the null model of nonlocal dispersal,
that is, seed rain is independent of locations of parent
trees (Clark et al. 1998b). The null model was rejected for
11 of 14 tree taxa,  the three exceptions being taxa  with
few trees, rare seed, or both. Comparisons among stands
demonstrated that dispersal for a species is consistent
among stands for all but the three best-dispersed taxa  be-
cause some distant trees (outside mapped plots) contrib-
uted seed to our traps (Clark et al. 1998b).

Dispersal distances and fecundities estimated for these
species (table 1) lay to rest the hypothesis that diffusion
(eq. [6]) might explain rapid post-Glacial migrations.
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The growth rates needed to produce rates of spread >102
m yr-’ are impossibly great (fig. 1). These mean dispersal
estimates confirm the need to examine seed dispersed
long dis tances .

Understanding the contribution of long-distance dis-
persal to rapid population spread requires the three ele-
ments of the integrodifference equation model ( 1 ), in-
cluding life-history schedules (summarized by Ri and T)
and seed dispersal f(x). Despite providing confident pre-
dictions at local (<lo’  m) scales, the SSS model does not
estimate “long-distance” dispersal. Seeds arriving from
distant points are rare; they constitute noise in the data
that cannot be resolved with a parametric model. Al-
though we cannot fit the tail, we can test hypotheses
about the tail using seed rain data from mapped plots.
The next section describes an inverse approach to assess
the degree to which long-distance dispersal may contrib-
ute to seed rain.

Methods

My analysis  consists  of  three s teps.  Firs t ,  I  test  the “long-
distance dispersal  hypothesis,” wherein I  establish the ex-
tent to which dispersal data from modern forests admit a
long-distance tail. Second, I construct a simulation model
of tree population spread based on fitted parameters to
assess characteristics of the tail  needed to match the rates
of spread inferred from the paleorecord. Finally, I invert

Table 1: Parameters used in simulations and for caiculation of life-history summary parameters Ri and T in the integrodiffer-
ence  model

Summed seed shadow model*
Life-history parameters

Maturation

Taxon
Fecundity p Dispersal a
(cm-’ yr-‘) (ml

Clumping 0
(dimensionless)

age  tl
(yr)

Longevity t2
(yr)

Acer  rubrum
Betula  lenta
Catya  g l a b r a  lx,
Corms f lorida
Fraxkus americana
Liriodendron tulipifera
Nyssa sylvatica
Pinus rigida
Quercus  rubra
Robinia psuedoacacia
Tilia americana
Tsuga canadensis

73.1 * 7.31
1,418 t 125

1.01 r .276
2.53 + 1.50
3.40 2 .788

133 2 13.9
7.33 5 1.63
2.16 + .466
5.56 2 3.07
2.19 + 3.46
8.95 t 4.26
9.14 5 2.38

30.8 t 3.80
34.2 + 3.08
10.1 2 4.10

7.84 + 4.45
19.3 +- 4.33
30.7 +- 2.30

6.68 + 5.87
15.1 2 2 . 9 2
1 2 . 9 2 1.80
3.52 2 2.10

17.34 t 4.83
22.8 + 8.78

10.1 C 4.36 8 80
6.40 2 1.94 40 150

.490 + 1.61 30 200

.394 t 6.31 1 0 125

.632 + .716 37 260
26.5 + 1.37 20 200

2.28 2 2.10 30 200t
2.01 + 2.69 1 2 100
1.22 t 1.60 50 200

.133 2 .143 6 200t

.680 5 2.66 30 140
=* 1 5 5 0 0

* Parameter estimates ? 1 SE. Confidence intervals, parameter correlations, and hypothesis tests are included in CIark et al. (1998b).
I’ Approximate estimates were used where unavailable (Burns and Honkala  1990).
$ Tsuga seed rain was overdispersed (more regular than Poisson), and thus the clumping parameter estimate tends to - (Clark et al. 19986).

..”
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the problem and ask whether dispersal kernels consistent
with paleorecords are compatible with field data.

The notion of “compatibility” between data and model
bears explanation. I pose two opposing hypotheses re-
garding the nature of dispersal. Hypothesis H,,  main-
tains that dispersal is local, being described by a single
kernel with low dispersal parameter and kurtosis. Hy-
pothesis H, is the competing view that some dispersal
moves long distances, as described by a large dispersal
parameter and kurtosis. I confront dispersal data with
kernels possessing long-distance tails that vary in three
respects, each of which might affect rates of spread: the
“fraction” of the dispersal kernel in the tail, the “length”
of the tail (summarized by a distance parameter), and the
shape (variance and kurtosis) of the tail. The test of the
long-distance dispersal  hypothesis  s idesteps the problem
of “fitting” a tail. Instead I ask how much and what sort
of long-distance dispersal the data will admit. The ap-
proach consists of appending tails to kernels fitted to
seed rain data (eq. [S])  and using the data to arbitrate
between the competing hypotheses Ho and HI. Data in-
compatible with long-distance tails are unlikely relative
to the competing model of local dispersal. Tests are used
to generate ‘probability surfaces for combinations of tail
fraction and length for “fat” (c = l/2) and “thin” tails
(c = 2).

How Much Tail  Will  the Data Allow?

I use a model of long-distance dispersal that admits as a
null model the kernel for local dispersal. The likelihood
of the 1ong:distance  model is identical to equation (9),
with the exception of two additional parameters al, a dis-
persal parameter for the tail, and 1 - p, the fraction of
the kernel allocated to the tail. The mixed kernel from
equation (81,

f(xla,  als  p) = [pfs(xijlG  c = 2)

‘XI-  (1 - p)fi(xJa,, cl = l/2 or 2)1,
01)

:

collapses to the local model (5) when p = 1. Decreasing
values of p represent increasingly larger fractions devoted
to the tail. The shape parameter for the tail was assumed
to be either fat (cl  = I/2)  or Gaussian (cl  = 2).

Standard data modeling would involve finding the pa-
rameters for equation (11) that maximize the likelihood
(9). Using a likelihood ratio test, a comparison of this
likelihood with that for the nested local model (p = 1)
would determine whether the long-distance model pro-
vided a significant improvement over the local model.
Unfortunately, model (11) is “ill-conditioned” due to pa-
rameter redundancy; equivalent likelihoods are achieved
with alternative parameter combinations (Seber and Wild

1989). We thus require a creative approach to model
comparison. I first treat the models as nonnested with
the view that each represents the data under different as-
sumptions concerning p (p = 1 for the local model, and
p < 1 for the regional model), but neither model actually
fits this parameter. The lowest value of.Akaike’s Informa-
tion Criterion, AIC = -2 In L + 2 X (number of pa-
rameters) (Akaike 1992),  represents the best fit. I deter-
mined the difference in AICs  for competing models:

In &(S]h,  6, p = 1) vs. In L,(S]&, a,& p < l),

where each has two fitted parameters but different as-
sumptions about p. AIC identifies the model most com-
patible with the data, but it does not have an associated
probabi l i ty .

Second, I assumed that the data contained a long-dis-
tance component (p < l), and thus treated p as an
added parameter. Although we cannot fit p, we  can cal-
culate the likehhood  of the data under different assump-
tions about p. The local model is viewed as being nested
within the long-distance model when p = 1. Likelihood
ratio tests compare the long-distance model H, (p C 1)
with the local model H,,  (p = 1). The two models have
different fitted parameters that determine degrees of free-
dom. The shape parameters c and cl are fixed in both
models. I completed fits for two shapes of long-distance
tails (two values of c,).  The fraction in the tail (1 - p)
and the “length” of the tail al are dimensions I explore
explicitly; they are not fitted parameters, but are fixed for
values of p ranging from 1 (i.e., local dispersal only) to
0.9 (10% of the kernel in the tail) and for al ranging
from 25 to 1,000 m. Because c and al are fixed (i.e., held
constant for any given fit), they do not contribute de-
grees of freedom. Fecundity parameter p is fixed because
the maximum likelihood (ML) estimate for the local
model (eqq. [9]-[  IO]) agreed with estimates calculated
independently (Clark et al. 1998b).  For each combination
of fixed parameters, I found ML estimates of a  and 8 for
L, that include a long-distance tail. I determined the
probability of this likelihood relative to the local model
L,, using the deviance

D = -2[ln  L,(SI&,  6) - In L,(SI&,  6, p)], (12)

which is distributed as x2 with 1 degree of freedom. A
probability of .05,  for example, indicates we might reject
the longidistance  dispersal hypothesis HI  with 95% con-
fidence.

The degree to which the data admit a long-distance
tail depends not only on the fraction of seed arriving in
traps that derive from long-distance dispersal but also on
other sources of variance. In order to identify factors af-
fecting the fits, I determined percentiles for local kernels
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both for the estimation error (confidence intervals on
2(x+ bilP,  a);  hereafter, 2) and for the degree of clumping
about j (eq. [9]). The estimation error about 2 was prop-
agated from 500 bootstrapped estimates of p and OL  for
each data set (each species). Percentiles for the negative
binomial at distance x are defined by mean parameter 2
and clumping parameter 8.

The above method uses the model of local dispersal as
the basis for evaluating long-distance dispersal .  If  there is
low power in this baseline fit, then the long-distance hy-
pothesis can describe the data as well as the local model
simply because we lack power to discriminate. The prob-
ability of identifying that the true a lies outside the con-
fidence interval (the probability of not making a Type II
error) describes whether “local” dispersal might in fact
be greater than the ML estimate of a seems to indicate.
The confidence with which we could discriminate large
distance parameters was assessed with bootstrapped
power curves for a. Probabilities of a for each bootstrap
sample were found using the likelihood profile based on
deviance:

D = -2[ln  L,(S]fi,  ak,  6) - In L(S]fi, &,  6)] (13)

(Efron and Tibshirani 1993). Parameter ,!.k is the likeli-
hood of the data under that hypothesis that the dispersal
parameter assumes the value ar and all other parameters
are ML estimates. Likelihood ratio tests with 1 degree of
freedom determine a probability for each CQ.  The frac-
tion of samples in which the probability of each CQ  falls
below 0.025 defines the power curve, that is, the chances
of rejecting the hypothesis when it is indeed false.

Parameter iz ing Li fe -History  Schedules

The analytical (eqq. [ I]-[41  and app. A) and simulation
models use parameters estimated from the same stands
used to est imate seed dispersal .  The fecundity schedule is

gpb(a) t, I a I t2

0 otherwise ’
(14)

where fecundity parameter p maximizes the likelihood of
the data given the model (9), and g is the germination
fraction. Maturation ages t, and longevities t2  were taken
from the literature (table 1). The “growth schedule” b(a)
was estimated from diameter increments measured on
the five long-term census plots (P. Wyckoff and J. S.
Clark, unpublished manuscript). Although these growth
schedules include the effects of density,  those effects have
minimal impact on population spread (see “Discus-
sion”). The “germination fraction” g subsumes the many
factors affecting seedling success that have weak correla-
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tion with density. These fractions from our stands range
from 0 to 0.8 seedlings per seed. Rather than fit this pa-
rameter, I chose a low value (g = 0.001) in order to
make rapid migration difficult. The survivor function
I(a) (eqq. [2]-[4])  assumed minimal mortality once es-
tablished, in keeping with density-independent growth.
The simulation model, however, does include density-
dependent thinning (next section).

Simulat ing Populat ion Spread

The stand simulation model is modified from that in a
previous article (Clark and Ji 1995) to incorporate age
structure and fitted kernels. I assume a transect of con-
tiguous 10 m X 10 m patches. The population is initial-
ized with four individuals of reproductive age at one end
of the transect. Individuals grow in basal area and thin,
depending on crowding level:

I,

G a z da, (15)

where n, and b, are density and basal area of age class a.
New individuals become established in the understory so
long as crowding G < 0.99. Thinning is driven by growth

1 dN- - a  -GidB
N da B da

(Clark 1992), where N and B are density and basal area
summed over age. Seed dispersal is a negative binomial
random variable (eqq. [9]  -[ lo]).  The mean number of
seeds dispersed to a patch is the integral of the dispersal
kernel,

Fh,  d = I x2 f(x)dx
XI (16)

where xl and x2 are distances to the near and far sides of
the 10-m wide patches, the limits X,  and X2 are Xi s  (XI/
a)‘,  and incomplete gamma functions are

y(a,  u)  = ” f-lbldz.
I0

The mean F(x,,  x2) and fitted clumping parameter are
the basis for negative binomial seed arrivals. The ex-
pected seeds landing on a patch j is the summed contri-
bution from all trees along the transect,

i-l k=l

1
3
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Figure 4: The mixed kernel used to test the long-distance dis-
persal hypothesis and to simulate a fraction of seed dispersed
long distances (eq. [Ill).  The local component J(x)  is Gaussian
(c = 2) and is  f i t ted to seed rain data in modern stands.  The
long-distance component j(x)  is fat-tailed (c = l/2)  and pre-
scribes the amount and length of the tail.

The dispersal kernel in equation (16) includes a fraction
p parameterized with seed rain data (eq. [9]) and a frac-
tion (1 - p)  allocated to a “tail” represented by G(x)  in
equation (11) (fig. 4).

,”

Several variables were calculated from simulations to
permit comparison with analytical models. Intrinsic rate
of increase, generation time, and net reproductive rate
were calculated from simulated populations using equa-
tions (3), (4), and (s), respectively. Velocities were calcu-
lated both for the edge of the continuous population and
for the most distant colonist and compared with rates
predicted by discrete (eq. [6]) and continuous (eq. [ 71)
reproduction,

Resul t s

The Data Accommodate a Tail

.

Seed rain data were compatible with dispersal kernels
having a long, fat tail. AIC comparisons (fig. 5) showed
that the long-&stance model fit the data better than did
a local model for low values of (1 - p) for most animal-
dispersed types (Carya,  Cornus,  Nyssu,  and Quercus)  and

. one wind-dispersed type (Tilia). For aII  but three wind-
dispersed types (Acer,  Liriodendron, and Be&a)  the AIC
differences D were small (<l in fig. 5) compared with
the AIC values themselves, which ranged from 24 (Ro-
binia) to 257 (Betula). Only Acer,  Liriodendron, and Be-
tula  reached D > 1 for p = 0.1, and these were the types
with the highest AICs  (139 for Acer,  244 for Liriodendron,
and 257 for Be&a).  Likelihood ratio tests supported in-
terpretations of AIC comparisons. Seed shadows con-
taining up to 10% in a tail (1 - p) and dispersal dis-
tances to 0~1 = 1,000 m did not approach sufficiently low

* . .
*.
. . .

probabilities for any taxa  to conclude that the appended
tail makes the fit substantially worse than the fitted local
model. Up to 10% in long tails were all well above prob-
abilities of 0.05 (figs. 5, 6). Long-distance dispersal is
compatible with data almost independent of the dispersal
parameter, with shapes fitting equally well for dispersal
parameters of 200-1,000  m. Near vertical contours in
figures 5 and 6 indicate minimal effect of tail length (a,)
when the fraction in the tail (1 - p)  is less than 0.1.

Thus, the fraction in the tail has greater influence on
the compatibility between model and data than does the
shape or dispersal parameter. Surprisingly, the decline in
probability with increasing tail fraction is greatest for
wind-dispersed taxa.  These taxa  have the largest dispersal
distances and, thus, were expected to be most compatible
with long-distance dispersal. With 10% in the tail, proba-
bilities for all animal-dispersed taxa  remain above 0.70,
whereas the longest wind-dispersed taxa  Acer,  Lirioden-
dron,  and Betula are all near 0.30 (figs. 5, 6).

Purely Local Dispersal Is .Insuficient
to  Expla in  Seed  Rain

Does this compatibility with a long tail mean that the
data might include seed arrivals from long distances or
that the local model is simply a poor fit? Three factors
other than presence of a “tail in the data” might cause us
to accept the hypothesis  of  long-distance dispersal  for  the
“wrong” reasons: large estimation error (a mediocre fit)
is compatible with nearly everything, high clumping
(broad spread about the mean) permits unrealistic lati-
tude in model form and parameter estimates, or low
power (e.g., inadequate sample size) does not allow us to
reject the hypothesis that dispersal is actually only local.
Error propagation, fitted negative binomial distributions,
and power curves (bootstrapped probabilities of rejecting
the null model when it is false) help identify how sources
of variability affect likelihood ratio tests.

Narrow estimation errors on seed shadows help allay
concerns that data might admit long tails simply because
fits are poor (fig. 7). If data poorly fit the local dispersal
model (eq. [9]), then estimation errors in figure 7 would
be broad, and any composite kernel might fit as well as
the local model; compatibility with a long tail (i.e., figs.
5, 6) might reflect, in part, low confidence in the model
fit. With the exceptions of several taxa  having low seed
recovery (Amelanchier, Comus,  Robinia, and T&a), 90
percentiles for estimation errors were narrow relative to ,
the same percentiles for the negative binomial sampling I

dens i ty .
Negative binomial percentiles for animal-dispersed spe-

ties  are large relative to wind-dispersed taxa  (fig. 7) due
to a high degree of clumping (fig. 8). Wind-dispersed

.
-”
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Nyssa

Quercus Amelanchier

Tilia Acer Liriodendron Betula
1000

Fraction in tail (1 -  p)
5% in long tail

Figure 5: The difference between AIC values for the two-component kernel -and the local model. The long-distance component
4(x)  has a fat (c = 112) tail. Positive values indicate a better fit with the local model and vice versa. AIC differences near 0 indicate
that data are compatible with the prescribed fraction(l  - p) and length (aI) of the long-distance component. Increasing AIC
with the increasing fraction and length of the tail (upper right-hand corner of each square) describe the increasing incompatibility
of the data with the model as the model assumes too much long-distance dispersal.

seed tends to a Poisson distribution. Seed shadows with
high clumping yield 90 percentiles that extend to zero
seeds even close to the seed source for all animal-dis-
persed species except Nyssa (fig. 7). Thus, despite rela-
tively high average seed rain near parent trees, there are
still many square meters of ground receiving little or no
seed. High clump%g could explain the compatibility with

. . distant dispersal for some taxa.
Compatibility between data and long-distance tails

does not result from low power for most species. If we
failed to resolve dispersal parameters in the local model,
then compatibility of data with a model including a long
tail could occur due to insufficient sample size. In addi-
tion to low estimation error on seed shadows (fig. 7),
power curves indicate our sample sizes are sufficiently
large such that, if present, we could confidently fit large
dispersal parameters for all taxa  except Fraxinus,  Cornus,
Carya, and Amelanchier (fig. 9). Low power for Amelan-
chier  and Cornus  is consistent with wide estimation error
in seed shadows (fig. 7). Tight confidence intervals on

Fraxinus  and Carya (fig. 7) belie low power to reject the
possibility that the dispersal parameter is large. Despite
moderately wide estimation error on seed shadows for
Tilia (fig. 7), there is high power to reject the possibility
of a large dispersal parameter (fig. 9).

Taken together, the data are compatible with >lO% of
seed dispersed long distances. Compatibility between
data and model depends on the tail fraction, but it is in-
sensitive to the tail shape and distance parameter. In the
case of some rare types, this compatibility may reflect
poor fits (Amelanchier, Cornus,  Robinia, and Tilia), low
‘power to discriminate long dispersal (Fraxinus, Cornus,
Carya, and Amelanchier), or both. But many of the best-
dispersed taxa  also have tight seed shadows, high power,
and still admit a long-distance tail in fractions >lO%.

Diffusion  Ratesfiom  Tree Life  Histories

Simulated populations parameterized with field data mi-
grated at rates described by the diffusion model for dis-
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carya CWflUS Nyssa

Amelanchier Robinia
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Tilia Liriodendron Eefula

Fraction in tail (1 - p)

Figure 6:  Probability surfaces for likelihood ratio tests between local and long-distance dispersal (eq. [ 121).  Axes as in figure 5.

Crete  reproduction (eq. [6]) and slower than’predicted by
the model for continuous reproduction (eq. [7];  fig.
10A). Although individuals reproduce continuously once
established, delayed maturation makes population spread
a stepwise  !process  better described by a model that as-
sumes discrete reproduction (eq. [ 11).

. . _‘ .

Asymptotic rates of spread using just the fitted (local)
seed shadow provide insights  into  migrat ion potent ia ls  in
the absence of long-distance dispersal. Overall, migration
is slow. Among species, migration rates ranged over two
orders of magnitude, but all were <20  m yr-‘. As pre-
dicted by diffusion (eq. [6]), simulated rates of spread in-
creased with decreasing generation time (fig. lOB), in-
creasing fecundity (fig. lOC),  and increasing dispersal
distance (fig. 10D). Correlations among species in their
life-history parameters, however, made fecundity appear
more impqrtant for migration than it actually is. For R6
values typical of these data, Sp  is low across the several
orders of magnitude of p values (fig. 10E). This effect,
C a  /3Is,  is plotted together with simulated rates in figure
1OC  to demonstrate that migration rates continue to rise
with increasing fecundity beyond what is predicted by
diffusion. This apparent sensitivity results from a correla-
tion among species in fecundity and dispersal (r =

0.376), which has a strong (i.e., strictly proportional) in-
fluence on velocity C. Sensitivity experiments with the
simulation model confirmed this  relatively small role for
fecundity compared to dispersal and generation time.
The relationships between generation time and C (fig.
10B)  and dispersal and C (fig. 1OD)  are consistent with
sensi t ivi t ies  predicted by diffusion.

Although spread was slower than observed in the
paleorecord, the growth rates’ were faster than estimates
from fossil pollen data (Clark 1993). Rates of pollen in-
crease are mostly below 0.02 yr-‘, whereas simulated
rates were 0.03-0.5 yr’-’  (fig. 11). The pollen estimates
predict rates of spread Cl m yr-‘; these simulations sug-
gest rates higher by an order of magnitude (l-10 m
yr-I),  but still slower than past tree migrations (loo-
1,000 m yr-I).

The Tai ls  Admitted by Real  Data Allow
for  Rapid Spread

A small fraction of seed allocated to a long-distance tail
permit spread as rapid as observed in the paleorecord,
provided the tail has the right shape. The example for
Acer  rubrum  (fig. 12) is typical. The traveling wave ob-
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Figure 7:  Comparison of maximum likelihood kernels (thick solid lines), 95% confidence intervals for estimation error (dashed
lines), and the negative binomial distributions of seed arrivals (thin solid lines). In most cases, estimation errors are substan-
tially tighter than negative binomial distributions. Estimation errors are bootstrapped from and negative binomials are fitted to
equation (9).

tained in the absence of long-distance dispersal is a co-
herent front thatspreads  at constant rate (fig. 12A) as
predicted by simple diffusion (eq. [6]). Incorporating a
small fraction in a tail of cl = l/2 that is compatible with
dispersal data (fig. 6) alters the pattern to one of incoher-
ent spread at accelerating rate (fig. 12C). The shape of
the front increasingly flattens as the outlying satellite col-
onies coalesce and increasingly pull away from the main
front.

Although data accommodated long tails regardless of
shape (c  = l/2 or 2), only the fat-tailed distribution pro-
duced rates approaching those obtained in the early
Holocene. The Gaussian long-distance tail (fig. I2B) pro-
duced spread more rapid than the local dispersal model,
but there was still an asymptotic rate of spread as pre-

dicted by simple. diffusion. A comparison of rates of
spread over time (fig. 120)  illustrates how the long-
distance exponentially bounded tail (c = 2) differs from
the local model only to the extent that it increases the
velocity. The linear increase in velocity for the thin tail
is predicted by equation (AS).

Because fecundity differences among taxa  are large (ta-
ble l), and fat-tailed dispersal exaggerates fecundity ef-
fects on spread (eq. [B2b]), fat-tailed dispersal resulted in
large differences among species. For example, Betula,
which produces an order of magnitude more seed than
any other species in this community, rapidly outpaced
other life histories, almost immediately occupying the en-
tire 10 km transect as soon as the initial trees achieved
reproductive maturity (fig. 13A). Acer  rubrum  achieved
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Figure 8:  Comparison of 95% confidence intervals for mean
dispersal  distances and degree of clumping. Wind-dispersed
species have longer dispersal distances and less clumped seed.
Wind-dispersed species = empty square. Animal-dispersed spe-
cies = solid circle.

rapid spread, in part due to short generation time (fig.
13B).  In both of these cases, the long-distance tail tended
to pull the continuous population front forward, acceler-
ating the rate beyond that predicted by simple diffusion
(fig. 13A,  B). Quercus and Nyssa have lower fecundities,
and the tail did not tend to pull the front forward (fig.
13C,  D). Rather, the tail tended to be supported by seed
dispersal from the population interior. These large con-
trasts in rate differ substantially with those obtained by
the same taxa  with simple diffusion (fig. 10).

The rates obtained in simulation tended to be slower
than predicted by integrodifference equation (A5). The
slowest moving taxa  (e.g., Nyssa and Quercus) had simu-
lated velocit ies closest  to those predicted by the analytical
model, whereas simulated rates for the faster moving Be-
t& and Quercus were far slower than predicted by the
analytical model (fig. 14).

Discussion .-

Reid’s paradox represents the failure of classical models
of dispersal to describe the reality of rapid spread. Find-
ing a model consistent both with modern dispersal and
with past migrations resolves the paradox by providing at
least one hypothesis for rapid spread. Lacking has been a
model that incorporates these assumptions together with
parameters estimated from data. Two challenges to re-

Dispersal parameter a

+  Amelsnchier

4-  Cafya

+  Comus ;

+  Nyssa

-Cl-  Querws

4X-  Robinia’

-D-  Acer

-a-  Betuia

+  Fraxitws

-c Litiodendmn

u  PhUS

-O-  TUia

-A-  Tsuga

.

Figure 9: Bootstrapped  power curves (eq. [ 131)  for dispersal parameter estimates..Power curves show the probability of mistakenly
estimating local dispersal (low, values of a) if dispersal was, in fact, long distance. The fact that power curves ‘for Amelanchier,
Comus,  Curya,  and Fruxinus remain well below 1 out to distances of 60 m does indicate a low degree of confidence that dispersal
is, in fact, local.
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Figure 10: Comparison of simulated diffusion rates (A-D)
against the predictions of equations (6) and (7) and sensitivities
to l ife-history parameters (E). A, The predicted rates for dis-
crete reproduction (eq. [6])  slightly exceed simulated rates,
whereas predictions from continuous reproduction (7) far ex-
ceed simulated rates. Simulated rates are plotted against genera-
t ion t ime (calculated from simulation) (B),  fecundity (C),  and
dispersal  (D) parameters (ML estimates from eq. [9]  and used
in simulation).-KSensitivities  of velocities (app. B) are small
for fecundity relative  to dispersal and generation ,time.

solving the conflict between past migration and modern
dispersal included an inability to estimate dispersal ker-
nels and implementation of a model that incorporates
dispersal and life history that can be measured in forests.

This  analysis  is  not  motivated by observat ions of  accel-
erating spread in paleorecords. The coarse resolution of
paleorecords do not permit the  spatial and temporal res-

I_. olution needed to resolve such patterns. Rather, the rates
averaged over centuries to millennia are sufficiently high
to motivate search for mechanisms of rapid spread.
Rather than claim to match observed patterns of acceler-

1 10 100 1000 10000
Mean dispersal distance (m)

Figure 11: Simulat ions predict  growth rates  higher  than est i -
mates from fossil pollen data (shaded parameter space) but still
far too low to match the high rates of spread in the paleorecord
(102-10’ m yr-I).
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Figure 12: Example population fronts and velocities for Acer  rw-
b r u m  contrast ing (A) purely local dispersal (eq.  [5])  with pa-
rameters from table 1, (B) a mixed kernel (eq. [ 111)  with a long
(aI  = 100. m) but Gaussian (c,  = 2) tail, and (.C) a mixed ker-
nel with fat tail (c,  = 1/2j of the same length as in (B). Param-
eter values in B and C are compatible with seed rain data for
Acer  rubrum  (P values of .65 for likelihood ratios in fig. 5). The
exponentially bounded tail has a higher velocity than purely lo-
cal dispersal,  but i t  does not accelerate (D). “Crown area” is
proportional to basal area given by G in equation (15).

ation  in the  paleorecord, I demonstrate here explanations
for the high  rates.

Rapid Spread Is  Compatib le  with  Dispersal  Data

Lack of dispersal estimates has been the “immediate out-
standing problem” (Mollison 1977, p. 311) for under-

,I
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Figure 13: Effect of a 5% fat tail with dispersal parameter aI = 100 m on rates of spread of two wind-dispersed (A, B) and two
animal-dispersed (C, D) species. At left are population fronts at 80 yr after the initiation of spread. At right are velocities for the
spread of the farthest established’individual (thin lines)  and for the edge of the “continuous population,” to the left of which all
patches are occupied.
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Figure 14: A, Analytical predictions (eq. [A5])  of spread for species in figure 13 having 5% of the kernel in a fat tail; B,  comparison
with simulated rates. Nyssa sylvatica  = thinnest line. Quercus = thin line. Acer  rubrum = thick line. Bet&  alleghaniensis  = thickest
l i n e .
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Table 2: Life-history parameters calculated from simulation

Taxon
Generation time T Net reproductive

(yr) rate Ri

1

standing population spread. In the absence of data, it has
been impossible to convincingly reject diffusion and to
postulate the actual  dispersal  kernels for seed.  Fit ted local
kernels (Clark et al. 1998b)  demonstrate the failure of a dif-
fusion model, and compatibility with rare, long-distance
dispersal (figs. 5, 6) provides a hypothesis in its place.

Using parameter estimates from field data, I obtained
migration.rates  surprisingly similar to (within the level of
uncertainty of) those estimated by fossil pollen data
(loo-1,000  m yr-‘;  Davis 1976; Huntley and Birks 1983;
Delcourt and Delcourt 1987; Birks 1989). Those rates de-

.  .  .  .  .  . pended on relaxing the assumption of local dispersal only
to a degree that was consistent with data (figs. 13,  14).
The dispersal estimates are sufficiently powerful to re-
solve local dispersal (fig. 9), yet they admit 2%-10%
long-distance dispersal (figs. 5, 6). Although animal-
dispersed taxa  have shorter average dispersal distances,
they were more compatible with the long-distance dis-
persal hypothesis than were wind-dispersed types. AI-
though our seed traps do not  quantify many types of  sec-
ondary dispersal by wind and animals, they do include
seed dispersed by frugivorous birds (Clark et al. 1998b).
Higher clumping (fig. 8), larger estimation..error (fig. 7),
and lower power (fig. 9) for animal-dispersed taxa  might
contribute to the differences observed in tests of the
long-distance dispersal hypothesis (figs. 5, 6).

Although fits to the data are insensitive to the tail
shape, the capacity for rapid spread relies on it. I found
little effect of tail shape on compatibility with data when
the fraction in the tail (1 - p)  was CO.10.  So, the data
cannot resolve the shape of the tail, but they do clarify
that long-distance dispersal could account for >5%  of
seed rain for all taxa  studied here. It is interesting to note
that we find from 1% to 5% seed for many taxa  in stands
where trees are absent, which is compatible with the re-
sults in figure 5. This small amount is enough to insure
rapid spread, provided the tail is “fat” (figs. 12, 13). The
Gaussian tail is effectively truncated in comparison to the
fat-tailed kernel ic!fig.  2). The small difference in probabil-
ities at large distances makes for extreme differences in
velocity (fig. 120).

. . : .:,
Why Does Li fe  History Not Matter?

The tree populations analyzed here vary over five orders
of magnitude in fecundity (lo-‘-lo4  seeds cme2  basal
area yr-‘) and over one order of magnitude in mean dis-
persal distance (2-40 m; Clark et al. 1998b)  and genera-
tion time (5-50 yr; table 2). On the  one hand, results
presented here emphasize the importance of fat-tailed
dispersal for the Holocene spread of trees. Analytical
models and simulations predict slow (~20  m yr-‘) diffu-
sion in ihe absence of long-distance dispersal (figs. 11,

Acer  rubrum 5.76 1,325
Bet& ienta 45.7 50,800
Catya glabra 59.4 36.6
Cornus  florida 26.0 64.0
Fraxinus  americana 59.2 116
Liriodendron 19.1 4,624
Nyssa sylvatica 45.7 193
Pinus  rigida 32.9 11
Quercus rubra 39.0 189
Robinia 28.1 1 9
T&a americana 24.8 1 0

Tsuga 39.6 293

Note: The germination fraction g  used in simulations is 0.001.

12). On the other hand, long-distance dispersal is ex-
pected to amplify the role of fecundity and generation
time (fig. 3D), a prediction borne out in simulation (e.g.,
fig. 13). There are some differences in Holocene rates of
spread that may relate to life history, but most taxa
achieve high velocities. Among the taxa  for which rates
of spread exceed 10’  m yr-’  are taxa  having the full range
of life-history traits (reviews of Davis 1976; Huntley and
Birks 1983; Ritchie and MacDonald 1986; Delcourt and
Delcourt 1987; MacDonald 1993); high rates are not re-
stricted to the most fecund, earliest-maturing, and best-
dispersed taxa.

The contradiction represented by the need for fat-
tailed dispersal to explain the high rates and the absence
of differences that might reflect life history suggests
Holocene spread may have failed to achieve potential ve-
locities. Although not all paleoestimates are the same, es-
timates for many taxa  exceed 10’  m yr’-’  and few exceed
lo3  m yr-‘. The accelerating spread predicted by fat-
tailed dispersal cannot proceed indefinitely. The fact that
the highest velocities estimated for many taxa  come at
the onset of spread (e.g., Delcourt and Delcourt 1987;
Birks 1989) suggests that climate or geographic con-
straints set in rapidly and restricted velocities before life-
history differences could become evident. The lack of
life-history effects supports the notion that migrations
were constrained by factors other than migration poten-
tial. Potential factors have been reviewed by Webb
(1986),  Bennett (1988), and Prentice et al. (1991).

Too Much Emphasis  on Low Probabi l i t ies?

Unlike the fat-tailed kernels analyzed here, travel of seeds
is not potentially infinite. The flat tail that makes approx-
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imation (A2) possible means that probabilities approach
0 too s lowly to  real is t ical ly  represent  dispersal  a t  impossi-
bly large distances. Because dispersal is not infinite, it is
important to ask if mechanisms exist that can transport
seed long distances and whether results obtained here de-
pend on the nature of the kernel beyond distances that
realist ically describe dispersal .  Observation suggests that
the part of the tail that matters extends in the range of
l-10 km. This range is consistent with estimates for fru-
givorous mammals and birds that cache fagaceous nuts
(Storm and Montgomery 1975; Vanderwall and Balda
1977; Johnson and Adkisson 1985; Clark et al. 1998a).
Storms likewise appear capable of moving some seed
such distances (Snow et al. 1995). Reid (1899), Webb
(1987), Birks (1989), Johnson and Webb (1989), and
Woods and Davis (1989) make plausible arguments for
dispersal  over such distances.  Greene and Johnson (1995)
suggest causes for fat-tailed dispersal in wind-dispersed
species.

Leaps beyond the range of several kilometers are not
essential to achieve the high velocities simulated here.
The rates reported here occur along a transect <lo  km
long (e.g., figs. 12, 13).  To insure that rates predicted by
simulation did not depend on kernel shape at impossibly
long distances, I completed simulations with kernels
truncated at 5,000 m. These simulations displayed the
same accelerating rates observed with “infinite” tails, in-
dicating that observable processes (long-distance dis-
persal by wind, birds, and mammals) could produce such
resul ts .

Limitat ions  of  S impl i f i ed  L i f e  His tory

Simulations and the integrodifference equation model
disagree on velocities, slightly, in the case of diffusion
(fig. lOA),  and substantially, in the case of fat-tailed dis-
persal (fig. 14).  Simplifying assumptions regarding life
history and stochastici ty represent  two reasons for poten-
tial difference&In my application of an integrodifference
equation model, I summarize life-history schedules by
Rt and T. Mollison (1991) points out that, if reproduc-
tion were strictly concentrated at age T and distance &,
net reproductive rate would have no effect on velocity
whatsoever, provided only that it is large enough to per-
mit spread (i.e., R: 2 2, one new recruit to move, on av-
erage, one pace to the left and one to the right). In this
case the population simply steps forward at rate pi/T.
Net reproductive rate appears in the calculation with the
higher moments of the reproduction and dispersal ker-
nel, the modest contribution in approximation (6) repre-
senting Gaussian dispersal. Variance in the life-history
schedule increases velocity, at least through its effect on
early reproduction (van den Bosch et al. 1990). Higher

moments in the dispersal kernel also increase the impor-
tance of net reproductive rate. Positive correlation
between dispersal and reproduction can reduce rate
of spread below the prediction that treats the marginal e_
distributions of dispersal and reproduction as inde-
pendent.  This effect of positive correlation arises as a
negative term contributed by covariance (the product
cumulant tc2,)  in van den Bosch et al.‘s  (1990) equation
(6.4) and its effects are discussed by Mollison (1991). My
simulations do not contain this correlation because fe-
cundity, but not dispersal, change with tree size. Collaps-
ing reproductive schedules down to two parameters,
Ri  and T,  could explain slight discrepancies for diffu-
sion (fig. 10A) and larger ones for fat-tailed dispersal
(fig. lOJ3).

Stochasticity may explain why simulated population
spread tended to be lower than predicted by the integro-
difference equation model. Mollison (1972) reports that
certain types of nonlinear stochastic models in one di-
mension can have finite velocities for kernels more lepto-
kurtic than exponential provided onlythat  the variance is
finite. While the deterministic model assumes growth of
noninteger (infinitely small) founding populations, the
stochastic model takes the predicted seed rain as the ex-
pectation of a clumped distribution with probabilistic es-
tablishment. The uncertainty of establishment in the sto-
chastic model probably accounts for lower rates in
simulation (fig. 14). If so, the approximation (A2) may
increasingly overestimate velocit ies with increasing kernel
kurtosis. Although integrodifference models provide
valuable insights into qualitative behavior of migrating
populations, it is possible that they might overestimate
rates of spread for long-lived plants with delayed matura-
t i o n .

Implicat ions for  Potential  Velocit ies

The prospect that plants can migrate in response to cli-
mate change at rates well in excess of those predicted
from average dispersal distances holds promise for popu-
lations in the face of future global change. Fossil pollen
demonstrate a migration potential for trees still unrec-
ognized in the Tropics, with its comparatively meager
paleorecord. Relatively few rare events can be enough to
support this spread. Contemporary invasions face a host
of conditions unlike those prevailing in the late- and
postglacial times, however, when temperate forest expan-
sion was so dynamic (Clark et al. 1998a; Pitelka et al.
1997). Results of this analysis are important, not as a
prediction of rates to be expected in the future, but
rather to shift the focus to processes that govern these
long-distance dispersal events as the ones that ultimately
control the velocity of spread.

l .
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APPENDIX A

Rate of Spread for Fat and Mixed Kernels

Estimating the ,rate  of population expansion proceeds in
one of two ways, depending on kernel shape. I outline
these two approaches and then use a hybrid to contrast
velocities for different shapes of the kernel (5), including
the mixed kernel used in simulation. The traveling wave
solution for an integrodifference equation (Kot et al.
1996) makes use of the moment-generating function and
provides an asymptotic velocity that obtains with the
passage of time. Moment integrals converge provided the
kernel is exponentially bounded (c 2 1 in eq. [5]).

Kot et al. (1996) provide a new approximation that ex-
tends (and is limited) to the case of fat-tailed kernels. For
purposes of estimating spread of tree populations, I first
scale time in generations, such that generation k = t/T.
Taking Fourier transforms in equation (1) gives

For initial density N,,  concentrated at x = 0, this linear
model becomes

&(o)  = N,R;(@j#. (Al)

Kot  et al. (1996) sidestepped the problem of inverting
(f(w))  k by showing that, as distance x becomes large (or
o  tends to 0) for fat-tailed kernels that possess moments,
this inverse tends to f(x), regardless of k. In the limit as
density approaches some low level of detection, say one
individual, that‘density  at large x is approximately

Nk(x)  = N,,Rikf(x)  . WI

Some specific results applicable to tree migration and
a mixed kernel can be derived by extension. The kernel
analyzed here is a two-part mixture that includes a large
fraction p of seed dispersed nearby f,(x) and a small frac-
tion (1 - p) that is dispersed a long distance, described
by f,(x)  (eq. [Sl). I first consider the migration rate that
results from purely local dispersal and then provide an
approximation for their combined effect. The “local”
component fitted to seed rain data is exponentially
bounded (c  = 2 in eq. [Sj). Because f(x) is a density
function, ‘(f(o))L  is the characteristic function of a den-

.

Upon inversion we obtain

e-‘“(f(o))‘do

(~43)

which satisfies Einstein’s (1905) diffusion equation.
Now inverting in the manner of Kot et al. (1996), we

have after k generations the linear distance occupied by
densities N 1 1,

xk  = cx[k21n&  + kin(s)]“*.

Calculating xk+, in the same manner, taking their differ-
ence, and dividing by elapsed time (a generation) gives
the rate

%+I  - XkC(t) =  -
‘T

=F (k+ 1)21nR,+(k+  1)ln
L”)i”’ (A4)

- [k21nR0+  kln(--$]“2},

which is diffusion, with asymptotic velocity

lim C(t) + f=.
t+-

My analysis of tree migration assumes a long-distance
component of the mixed kernel having a fat tail (c =
l/2). If migration is dominated by the tail of the kernel
ft(x), densities at large x tend to

Although I do not fully justify exclusive focus on the tail,
the asymptotic rate of expansion implied by (A5) below
demonstrates that the tail of the kernel rapidly outpaces
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the diffusive spread that can be supported by (A4).  We where constant Z, = ln(( I - p)  N0/4a,)  depends on ini-
can further appeal to Kot et al.‘s  (1995) demonstration tial conditions, the fraction in the tail, and the length of

the tail. It can be readily demonstrated that the fatter the
tail the greater the effect of net reproductive rate and
generation time.

that the shape of the density profile, Nr(x)  at large x is
proportional to the kernel itself (their app. A for kernels
lacking moment-generating functions). Solving for x and
setting the critical density N,(x)  = 1 yields the length
along this transect that is occupied by the population at
densities exceeding one individual in generation k:

xk = a[khR, + ln((’  ii)No)]2.

Repeating the process for generation k + 1 permits cal-
culation of the rate of spread

a, In RiC,(k)  3  xk+‘;  xk  z ~
T

(A5)

X (2k  + 1) In Ri  + 2 In

This rate increases linearly with number of generations k
(i.e., time = kT)  since the population was initiated at x =
0 and density No.  I have not pursued here the possibility
of thresholds that might depend on R&  T, and/or p
needed for spread to occur at all.

APPENDIX B

The Importance of Life History

This appendix uses a sensitivity analysis to demonstrate
how fat-tailed dispersal amplifies life-history differences
among species. For a diffusing population, the rate of
spread (eq. [6])  is weakly affected by fecundity. Let Sp  be
the proportionate effect on the asymptotic rate of spread
C for a fractional change in fecundity B.  This sensitivity
tends to

. . . . I \
031)

Fat-tailed kernels amplify the effects of fecundity and
generation time. For the above case of c = l/2 sensitivity
coefficients are

& = (k + ‘/d ln Rh + 22, - 1
(k  + l/z)  In  Ri + Z.

; 0324

(2k + 1) In  Ri + Z.

(2k + 1) In  Ri + 22, 1 ; (B2b) .
a n d

(2k  + l/2)  In Ri + Z,

(k + l/z)  In  Rt + 2,  ’
WC)
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